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Abstract: - In this paper, we propose a unified theory for arithmetic transform of a variety of discrete trigono-
metric transforms. The main contribution of this work is the elucidation of the interpolation process required in
arithmetic transforms. We show that the interpolation method determines the transform to be computed. Sev-
eral kernels were examined and asymptotic interpolation formulae were derived. Using the arithmetic transform
theory, we also introduce a new algorithm for computing the discrete Hartley transform.
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1 Introduction

Originally conceived in 1903 by the German mathe-
matician Ernst H. Bruns, Arithmetic transform the-
ory has arrived to Engineering framework 85 years
later, when Donald W. Tufts and G. Sadasiv —
independently — rediscovered an algorithm simi-
lar to Bruns’ method. They called it “Arithmetic
Fourier Transform” (AFT). Arithmetic transform
method has an important advantage over other pro-
cedures: it requires only additions operations (ex-
cept from multiplications by scale factors) [1]. In
fact, as the theory is based on Möbius function there
will be only trivial multiplications, i.e., multiplica-
tions by

���������	�
���
. However, Tufts-Sadasiv algo-

rithm had a serious constraint: it could only calcu-
late the Fourier series coefficient of even periodic
signals [2].

In 1990, Tufts-Sadasiv algorithm was revisited
and its restrictions were removed by Irving Reed,
Donald W. Tufts et al. [1]. Now one could use arith-
metic transform method to evaluate all Fourier coef-
ficients (even and odd) of an arbitrary periodic func-
tion.

Further improvements were made in 1992. Irv-
ing Reed, Ming-Tang Shih and co-workers refined
the previous AFT algorithm and proposed the “Sim-
plified AFT”. This new version of AFT could handle
with both even and odd Fourier series coefficient,
just as its predecessor. Moreover, the algorithm de-
scription was made clearer and more symmetric [3].

But the surprising point is that this last version of
AFT (Reed-Shih) is identical to the very first one
analysis derived by Bruns back in 1903.

Searching the literature, we did not found any
mention about a possible “arithmetic Hartley trans-
form” to compute the discrete Hartley transform
(DHT). So we start to devise how it would be for-
mulated.

DHT is the discrete version of the symmetric
integral transform created by R. V. L. Hartley in
1942. Besides its numerical appropriateness [4],
the DHT has proved along the years to be a impor-
tant tool with several applications, such as biomedi-
cal image compression, OFDM/CDMA systems and
ADSL transceivers [6].

Now it is our goal to derive an arithmetic
method for discrete Hartley transform. As we seek
for this new procedure for the DHT evaluation, a
general theory was sketched and a family of arith-
metic transforms was identified. More than that —
and that is the most important point — we found
a new interpretation of the interpolation role in the
arithmetic theory.

In this paper, we begin locating recent applica-
tions of Hartley transform, then we derive an arith-
metic method to evaluate discrete Hartley transform.
Then it is mathematically shown that interpolation
has a key role in arithmetic transforms, determining
the transform. Also, ideal and non-ideal interpola-
tion are investigated. Finally, an arithmetic trans-
form generalization is suggested.



2 The Arithmetic Hartley Trans-
form

Let � be an
�

-dimensional vector with real ele-
ments. The DHT establishes a pair denoted by ����������	��

���� �	������
������ � ����������

����
��������
��

,
where the elements of the transformed vector (i.e.,
Hartley spectrum) are defined by���! �� ����
" # $ � � #&% '(�)+*-,/.10�2�43 � 0 � �	�
�������� � �����

(1)
where

'(�)�5  '�6�)�5-78):9<;=5
is Hartley’s “cosine and

sine” kernel.

Lemma 1 (Fundamental Property) The function
'(�) � % �

satisfies� ��
"> $ � '(�)+* ,/.�? 0�@0 3 �BA 0 if
01C 0�@ �

�
otherwise

� (2)D
In order to design a fast algorithm for the DHT

evaluation, let us define averages E � of the time-
domain elements byE �! �0 � ��
"> $ � � >GF H � 0 � �������� � � �/�

(3)

It is interesting to note that this definition re-
quires fractional index sampling (!). As mentioned
before, this fact makes further considerations im-
practical, since we have only integer index samples.
This subtle question will be treated in the sequel.
Let us accept these fractional indexes for a while.

An application of inverse Hartley transform on� >GF H at Equation 3 yields:

E � � �0 ����
"��I $ � ����I � ��
"> $ � '(�) * ,/.�? 0�@0 3 � (4)

From Lemma 1 above, it follows that:E � � �0 ����
"��I $ � ����I � ��
"> $ � '(�)�* ,/.�? � 0�@0 � 3�KJML ����
&NPO �RQ" S $ � � S ��� (5)

For simplicity and without loss of generality,
consider a signal � with zero mean value, i.e.,


�UT ����
# $ � � # � �
. This consideration has no influ-

ence on the values of
�V� � 0XW� �

. Then, the arith-
metic Hartley transform can be derived by the use
of modified Möbius inversion formula for finite se-
ries [1].

Theorem 1 (Möbius Inversion Formula for Fi-
nite Series) Let Y be a positive integer number andZ\[

a non-null sequence for
�^] Y ] �

and null
for Y`_ �

. If a [ � T J �bO [ Q� $ 
 Z � [
, then

Z\[ �T J �bO [ Q> $ 
dc � ? � a > [ , where e % f is the floor function.

D
According to Theorem 1, we can state the following
result.

Theorem 2 (Reed et al.) If

E � �KJML ����
&NPO �RQ"> $ 
 � S ��� �g] 0 ] � � ���
(6)

then ��� �KJML ����
&NPO �RQ" h $ 
 c �ji�� E � h � (7)

where
c � % �

is Möbius function.

D
Now we are in condition to handle with zero

mean value signals, computing its transform. To
illustrate, let us consider an 8-point DHT. Using
Möbius inversion formula, the spectral analysis is
given by:��
 � E 
 � E�k � E�l � E�m 7 E�n � E�o �� k � E�k � EVp � E�n � � m � E�m �� l � E�l � E�n � � n � E�n �� p � EVp � � o � E�o �
The above theorem and equations completely spec-
ifies how to compute Hartley spectrum. Addition-
ally, the inverse transform can also be established.
The following is straightforward.

Corollary 1 Inverse discrete Hartley transform
components can be computed by� # �KJML ����
&NPO # Q" h $ 
 c �ji��&q # h �

(8)

where
q #  
 # T # ��
> $ � � >GF r ,

2 � ������ � � � �
.

D



A careful examination of the above makes us
to come to a truly remarkable point: the original
Arithmetic Fourier Transform has identical equa-
tions to those we have just derived for a Hartley
transform. Just compare Equations found in [2]
and Equation 6. An important question arises: if
the equations are the same, which spectrum is be-
ing evaluated? Fourier or Hartley spectrum? Clear
understanding the underlying mechanisms of arith-
metic theory will be possible in the next section.
Once more we beg the reader to put this “philosoph-
ical” question aside for a while and carry on our de-
velopments.

To sum it up, at this point we have accumulated
two major questions to answer: (i) How to handle
with fractional indexes? and (ii) How can same for-
mulae result in different spectra? Interestingly, both
questions have the same answer, as we will see.

Usual arithmetic theory deals with spectrum
approximations via zero- or first-order interpola-
tion [1, 3, 7]. The analysis presented in this work
allows a more encompassing perception of the inter-
polation mechanisms and gives mathematical tools
for establishing validation constraints to such inter-
polation process.

At this point, we have established the arithmetic
transform formula as seen on Equation 7. The arith-
metic transform algorithm can be summarized in
four major steps:

1. Index generation, i.e., to find out the indexes
of necessary samples (

? � �
).

2. Fractional index samples handling, which re-
quires an interpolation.

3. Computation of the averages: E �  
� T � ��
> $ � � >GF H .

4. Computation of spectrum by Möbius Inver-
sion Formula:

��� � T JML ����
&NPO �RQh $ 
 c �ji�� E � h .
In this work we are concerned with step two. In

the sequel, we will derive a mathematical method
which fully explains the real importance of this al-
gorithm step.

Now let us examine the fractional indexes and
derive a method to evaluate them. We will address
to the deepest nature of the arithmetic transform: the
interpolation process.

3 Interpolation

3.1 Ideal Interpolation

What does a fractional index discrete signal compo-
nent really mean? Let � � ��� ������ �	������
�� �

. The
value of

���
for a noninteger value � , �

W��� , can be
computed by��� � ����
"� $ � ��� '(�) * ,/.10 �� 3� �� ����
" # $ � � # ����
"� $ � '(�) *-,/.10�2�43 '(�)+*-,/.10 �� 3 �

(9)

Defining the Hartley weighting function by

�
# � � �  �� ����
"� $ � '(�)+* ,/.10�2��3 '(�) *-,/.10 �� 3 �

(10)

the value of the signal at fractional indexes can be
found by an

�
-order interpolation expressed by:���  ����
" # $ � � # � � � % � # � (11)

The same way for each transform there is a ker-
nel associated, for each kernel there is weighting
function associated. Consequently, a different in-
terpolation process for each weighting function is
required. This is the way our equations were the
same. The difference form one transform to another
resides in its interpolation process.

It can be shown that weighting functions make
the Equation

T ����
# $ � �
# � � � � �

to hold. As mat-
ter of fact,

C � # � � � C ] �
. In the cases where � is

an integer number, it follows from the orthogonal-
ity properties of

'(�) � % �
function that � ��� � � � �

and�
# � � � � � �
	 2 W� � � . As expected, there is no need

for interpolation.
After some trigonometrical manipulation, the

interpolation weights for several kernels can be ex-
pressed by closed formulae. As stated before, there
is a weighting function for each transform. Let us
denote the sampling function by �

( � % �
, �
( � 5 �� 

�� ���� .

Proposition 1 An
�

-point transform has interpola-
tion weighting functions given by



� ��� �� ��� �� ��� �� ��� ����� ���� ���� ���� � �

� � � �	� �
� ��� ��� ���
�
# � � �
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�
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�
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�

Fig. 1: Hartley weighting functions used to interpo-
late

��
 �
� 

and

��
 �
� m (
� ��� , blocklength).

Cosine Kernel

�
# � � � � 
k � 7 ����
&O k� A 
k �
��� F��������F k � L # ���:N"!�
� L � L # ���:NPO�� N

7

k �
��� F��������F k � L # # �:N"!�
� L � L # # �:NPO�� N%$ �

Sine Kernel

�
# � � � � ����
&O k� A 
k �
� � F��������F k � L # ���:N !�
� L � L # ���:NPO�� N �
k �
� � F��������F k � L # # �:N !�
� L � L # # �:NPO�� N%$ �

Hartley Kernel

�
# � � � � 
k � 7 ����
&O k� �
� � F��������F k � L # ���:N !�
� L � L # ���:NPO�� N 7
k � '�6�&(' � L # # �:N�*) � 
k �,+.- � � F��������F k � L # # �:N !�� � L � L # # �:NPO�� N �D

With this proof, we complete the mathematical
description of the algorithm. At this point, the de-
rived formulae furnish the exact value of the spectral
components. The computational complexity of this
ideal interpolation implementation is similar to the
direct implementation, i.e., computing the transform
by its definition:

��� � T ����
# $ � � #�'(�)0/ k �� 0�221 .
To exemplify, in Figure 1 we show two weight-

ing functions used to compute
� 
 �
� 


and
��
 �
� m during

a Hartley transform. These functions were calcu-
lated by closed formulae.

3.2 Non Ideal Interpolation

According to the index generation (
? � �

), we find
that the number of points 3 which will require
some kind of interpolation is upper bounded by3 ] T54�6 �,7 � �

. This sum represents the number
of samples with fractional index. So, this approach
is attractive for large non-prime blocklength

�
with

great number of factors, because it will require a
smaller number of interpolations.

Our idea is to find simpler formulae for weight-
ing functions, constrained to large blocklength con-
dition. Rather than using exact weighting function
formulae, let us take the limit when

�98;:
and

derive asymptotic approximations of the weighting
function.

Proposition 2 A continuous approximation for
the interpolation weighting function for sufficiently
large

�
is given by:

Cosine Kernel<� # � � �>= �
� L k � L # ���:NPNk 7 �
� L k � L # # �:NPNk
Sine Kernel<� # � � �>= �
� L k � L # ���:NPNk � �
� L k � L # # �:NPNk
Hartley Kernel<� # � � �?= �

( � ,/. � 2 � � �	� 7 
	� +.- � k � �k � L # # �:N � D
It is interesting to note that the asymptotic

weight for Hartley transform can be written in terms
of �

( � % �
’s. Provided that a Hilbert transform is used,

the asymptotic weighting function for Hartley ker-
nel is given by<� # � � �>= �

( � ,/. � 2 � � �	� �A@ 2 iCB �
( � ,/. � 2 7 � �	��D �

(12)

or alternatively,<� # � � �>= �
( � ,/. � 2 � � �	� �FE ( � ,/. � 2 7 � �	� � (13)@ 2 iCBHG / , � � 7 2 � 1 D �

where
@ 2 i

denotes the Hilbert transform,
E ( � 5 �+ +.- � �� is the co-sampling function and

G�� 5 �
is the im-

pulse symbol.

3.2.1 Zero-order Interpolation

Zero-order interpolation is done by rounding the
fractional index. The estimated (interpolated) sig-
nal

<��I
will be found by a simple rounding, i.e.,<��I � �KJ IML

, where N % O is a function which rounds off
its argument to its nearest integer. Examining the
asymptotic behavior of the weighting function for
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Fig. 2: Comparison of Hartley transform of an ar-
bitrary function

Z � 5 �
computed by definition and

by arithmetic algorithm. Simulation data:
Z � 5 � �'�6�) ����� . 5 � / 5

� 
k 1 k , � ��� , .
cosine kernel, we derive the following results:<� # � � �>= � 	 2 W� N � O � � � N � O �<� J �2L � � �>= �

( � ,/. � N � O � � �	�, = �, �<� ��� J �2L � � �>= �
( � ,/. � N � O � � �	�, = �, � (14)

An essential observation is that
� �  T ����
# $ � �

# � � � %� #
, because it yields<��� = � J �2L � � � � J �2L 7 � ��� J �2L � � � � ��� J �2L= �, � J �2L 7 �, � ��� J �2L � (15)

Thus, for even signal (
� � � � ��� � ) we have that

the approximated value of the interpolated sample is
roughly given by

<��� = �KJ �2L
.

It is straightforward to see that the influence of
odd part of the signal is annulled by zero-order inter-
polation. Zero-order interpolation is “blind” to odd
parts. So, zero-order interpolation is deeply associ-
ated with cosine transform. In fact, as show by the
set of Equations 14, zero-order interpolation is an
(indeed good) approximation to the cosine asymp-
totic weighting function.

Zero-order interpolation now formally justified
was intuitively used in previous work by Tufts, Reed
et al. [1, 2, 3]. Hsu, in his Ph.D. dissertation, derives
an analysis of first-order interpolation effect [7].

3.2.2 Interpolation Order

A simple and naive way to control interpolation pro-
cess is use only the  more significant values of

�
# � � � . For zero-order interpolation, we have clearly

that  � �
.

Let us get the indexes of these  more signifi-
cant weight in a set ��� . Proceeding this way, a non-
ideal interpolation method is to perform the follow-
ing calculation:<��� � �� "# � ��� � # � � � % � # � (16)

where �  T I � ��� � I�� � � is a normalization factor.
In Figure 2, we present a 32-point discrete Hart-

ley transform of an arbitrary signal computed by
definition and by the arithmetic method using  � ,

.
Note the small blocklength.

4 Generalization

A kernel invariant approach to discrete transforms
can be obtained in a simple way.

Consider a discrete transform with � � as ker-
nel:��� � �� ����
" # $ � � # � � � 0 � 2 � � 0 � �	���� � � � �/�

(17)
For instance we will consider only the following

kernels

� � � 0 � 2 � ��� '(�)+*-,/.10�2�43 �
'�6�)+*-,/.10�2�43 ��� ��I ��� H&rF�� �

(18)

Lemma 2 (Generalization of Lemma 1)

�0 � ��
"> $ � � � * 0�@0 � ? � 3 � A � se
01C 0�@

,�
otherwise.

(19)D
The arithmetic transform has the same formula-

tion for all transforms in a certain class. The differ-
ence from one transform to another is the interpola-
tion process used. The fractional index samples will
be estimated in a difference way for each transform,
since the interpolation depends on the kernel.

5 Conclusion

This purely discrete definition led us to arithmetic
transforms key point: the interpolation process. We



showed that the fundamental equations of the al-
gorithms are essentially the same (kernel indepen-
dent). In addition, we proved that interpolation de-
termines the kind transformation.

It has not escaped our notice that this prop-
erty opens path to the implementation of “univer-
sal transformers”. In this kind of construct, the cir-
cuitry for different transforms remains unchanged,
except from the interpolation module. A different
interpolation module would reflect different trans-
form (Fourier, Hartley, Cosine).

Closed formulae for interpolation of several
transforms were derived. For large blocklength, we
proposed asymptotic approximations. These con-
siderations made the interpolation formulae very
simple. These considerations made the interpola-
tion formulae very simple.
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