Probabilité d'erreur du codage aléatoire avec décodage optimal sur le canal à bruit gaussien additif, affecté ou non de fluctuations d'amplitude (*)

Gérard BATTAIL **
Helio MAGALHÃES DE OLIVEIRA ***

Résumé
On a repris les calculs de Shannon relatifs à la probabilité d'erreur du codage aléatoire en présence de bruit gaussien additif, avec décodage optimal, sans oublier centuate que l'emploi de signaux d'erreur constante. Les moyennes disponibles de nos jours permettent de pousser plus loin les calculs littéraux et de calculer numériquement les expressions exactes, sans devoir recourir à des bornes. On utilise les résultats ainsi obtenus pour la prévision des performances qui peuvent être attendues d'un système combinant un codage séparable à distance maximale, non binaire, et une application des symboles de l'alphabet sur les points d'une constellation plane, notamment d'amplitude constante. On examine aussi le cas où la réception a lieu en présence de fluctuations de l'amplitude selon la loi de Rayleigh.

Mots clés: Théorie information, Théorie Shannon, Codage aléatoire, Probabilité d'erreur, Erreur Rayleigh, Signal de modulation, Décodage optimum, Codage non binaire.

ERROR PROBABILITY OF RANDOM CODING WITH OPTIMAL DECODING OVER THE ADDITIVE WHITE GAUSSIAN NOISE CHANNEL IN THE PRESENCE OR IN THE ABSENCE OF AMPLITUDE FLUCTUATIONS

Abstract
We took up again Shannon computations about the error probability of random coding in the presence of additive Gaussian noise, with no other constraint than the use of constant energy signals, and assuming optimum decoding. The means nowadays available enable to go further in the literal computations and to numerically compute the exact expressions instead of having to rely on bounds. The results thus obtained are intended to predict those which may be expected from a system combining (non binary) maximum distance separable coding with a mapping of the alphabet symbols into the points of a 2 dimensional constellation, especially of a constant-amplitude one. We also consider the case when receiving takes place in the presence of Rayleigh-distributed amplitude fluctuations.

Keywords: Information theory, Shannon theory, Random coding, Error probability, Rayleigh fading, Signal set, Phase shift keying, Non binary code.

Sommaire
I. Introduction.
II. Calcul de la probabilité d'erreur moyenne obtenue par codage aléatoire sans restriction à un alphabet fini, selon Shannon.
III. Prévision de la probabilité d'erreur moyenne obtenue par codage aléatoire associé à une modulation représentant les symboles par une constellation plane.
IV. Conclusion.
Annexe.
Bibliographie (10 réfs.).

I. INTRODUCTION
Nous avons récemment montré que des moyens déterministes, combinant un codage par une séparabilité à dis-
Il faut noter que l'angle soit d'une région de la surface d'une hyperespace à n dimensions est défini comme le rapport de l'aire de cette région à la puissance n - 1ème du rayon de l'hyperspace.
s’exprime de l’expression de \(w_n(\theta)\) ; la fonction \(Q^*_n(\theta)\) est la dérivée de \(Q_n(\theta)\), probabilité que le signal reçu soit représenté par un point extérieur à un cône ayant son sommet à l’origine, d’axe colléinaire au vecteur représentant le signal émis, et de demi-angle au sommet \(\theta\). Cette dérivée est négative.

Nous réécrivons (1) sous la forme :

\[ P_n = 1 - \int_0^\theta F_n(R; \theta) \frac{G_n(S; \theta)}{S} \, dR, \]

où :

\[ F_n(R; \theta) = \frac{1}{H} \left( 1 - w_n(\theta) \right)^{M-1}, \]

etant le débit d’information par mot émis et par dimension (exprimé en utilisant des logarithmes népériens, ce qui correspond au choix du logarithme naturel comme unité d’information), et où :

\[ G_n(S; \theta) = \frac{1}{H} Q^*_n(\theta), \]

\[ S \rightarrow N \] étant le rapport signal à bruit dans le canal.

Les facteurs positifs \(F_n\) et \(G_n\) dépendent l’un et l’autre du nombre \(n\) de dimensions. Le premier dépend aussi du nombre \(M\) du mot du code, mais non du rapport signal à bruit. Il peut donc être exprimé en fonctions de \(\theta\) défini par (5) et c’est pourquoi il apparaît en argument de \(F_n\) dans (4).

Le second facteur dépend du rapport signal à bruit dans le canal mais non du nombre \(M\) des mots du code, ni du rapport signal à bruit. Il s’agit, d’autres, que la densité de probabilité de l’angle \(\theta\) entre les vecteurs associés à un même signal émis et le signal reçu, qui permet de réécrire (1) sous la forme :

\[ P_n = \int_0^\theta \left( 1 - F_n(R; \theta) \right) \frac{G_n(S; \theta)}{S} \, dR, \]

beaucoup mieux appropriée à un calcul numérique, que nous avons systématiquement préférée à cet effet.

Nous avons calculé les deux facteurs \(F_n\) et \(G_n\) dans les paragraphes I.2 et II.4. Nous y renvoyons à des interets pour le détail des calculs, en notant que le facteur positif du premier est directement au paragraphe II.4, qui en constitue une présentation d’ensemble.

II.2. Premier facteur de l’intégrande dans (3).

L’expression intérieure de l’intégrale dans (2) peut être trouvée explicitement [5, page 131, formule 2.513] ; on en déduit que :

\[ w_n(\theta) = \frac{1}{\pi} \left( \theta + 2(-1)^{n/2-1} \frac{C_{n/2-2}}{C_{n/2-2}} \sum_{\chi=0}^{(n-2)/2} (-1)^\chi C_{n/2-2} \sin(n-2-\theta) \right), \]  

n pair.

\[ (8a) \]

\[ w_n(\theta) = \frac{1}{\pi} \left( \theta + 2\left(1+\frac{(-1)^{n/2-1}}{C_{n/2-2}} \sum_{\chi=0}^{(n-2)/2} (-1)^\chi C_{n/2-2} \sin(n-2-\theta) \right) \right), \]  

n impair.

\[ (8b) \]

Les expressions (8) sont exactes. Si nous cherchons une approximation de \(F_n(R; \theta)\) pour \(n\) grand, nous remarquons que le premier terme non nul dans le développement de \(w_n(\theta)\) en série de MacLaurin est de degré \(n-1\). Soit \(f_{n-1}\) le coefficient de \(\theta^{n-1}\) dans ce développement. Définissant pour \(n\) entier positif quelconque :

\[ m!! = 2.4.6 \cdots n = 2^{n/2}(n/2)! \]

si \(n\) est pair et

\[ m!! = 1.3.5 \cdots m = \frac{2^{m/2}}{\sqrt{\pi}} \left(1 + \frac{1}{2m+1} \right)! \]

si \(m\) est impair, nous pouvons écrire le développement en série de \(\theta\) suivant \(x\) soit :

\[ \theta = x + \frac{x^3}{6} + \frac{x^5}{40} + \cdots + \frac{(-1)^k (2k-1)! x^{2k-1}}{(2k)! k k!} \]

Ce développement a pour premier terme, de sorte que \(f_{n-1}\) est le premier terme du développement en série de \(w_n(\theta)\) en série de MacLaurin. Il apparaît en argument de \(F_n\) dans (4).

S’il nous est impossible de donner de \(f_{n-1}\) une expression indépendante de la parité de \(n\), soit :

\[ f_{n-1} = \frac{2}{\pi} \Gamma \left( \frac{n}{2} \right) \]

(11a)

\[ (\text{ impair}) \]

\[ (\text{ pair}) \]

mais nous montrons en annexe A qu’il est possible de donner de \(f_{n-1}\) une expression indépendante de la parité de \(n\), soit :

\[ f_{n-1} = \frac{2}{\pi} \Gamma \left( \frac{n}{2} \right) \]

(12)

où \(\Gamma(\cdot)\) est la fonction gamma d’Euler.

Si \(n\) est assez grand, on obtient en appliquant la formule de Stirling à (12):

\[ f_{n-1} \approx \frac{1}{\sqrt{2\pi n}} \]

(13)
et nous avons donc, en remplaçant le contenu des crochets dans (10) par le premier terme de son développement en série :

\[ F_n(R; \theta) \approx \exp \left( -\frac{1}{2} \sin^2 \theta \right) \]

\[ = \exp \left( -\frac{1}{2} \sin^2 \theta \left( R - \ln \left( \sin \theta \right) \right) \right) \]

Cette fonction varie quand \( \theta \) augmente, d'autant plus rapidement que \( n \) est grand, d'environ 1 à environ 0, au voisinage de l'angle tel que l'argument de la première exponentielle dans le membre de droite de (14) vaille -1, soit :

\[ \theta_n = \arcsin \left( \frac{2n+1}{2n-1} \right) \exp \left( -B_n(n-1) \right) \]

Si nous faisons tendre \( n \) vers l'infini, \( F_n(R; \theta) \) devient une fonction en échelon où la transition a pour abscisse :

\[ \theta_n = \arcsin \left( \frac{2}{\sqrt{n}} \right) \]

résultat déjà obtenu par Shannon [4].

II.3 Second facteur de l'intégrande dans (3).

Shannon [4] a montré que :

\[ Q_n(\theta) = P(n-1, \sqrt{nS/N}; \sqrt{n-1} \cot \theta) \]

où \( \epsilon \) et \( N \) notent respectivement la puissance moyenne du signal et celle du bruit ; \( P(n, \epsilon, N) \) est la probabilité :

\[ P(m, n, \epsilon, t) = \frac{1}{m} \left( t - m \sum_{i=1}^{m} e_i \right) \]

où \( m \) est l'entier positif; \( \epsilon \) et \( x_i \) sont les variables aléatoires gaussiennes mutuellement indépendantes de moyenne nulle et de variance 1; \( \epsilon \) et \( t \) sont des paramètres réels.

Nous montrons en annexe B que la probabilité \( P(m, n, t) \) peut s'exprimer comme l'intégrale :

\[ Q_n(\theta) = \int_{-\infty}^{+\infty} p_n(u) du \]

où \( p_n(u) \) est la densité de probabilité (87). On définit de (17) :

\[ Q_n(\theta) = \int_{-\infty}^{+\infty} p_n(u) du \]

et

\[ G_n(S/N; \theta) = -Q_n(\theta) \]

\[ = \sqrt{n-1} \left( 1 + \cot^2 \theta \right) p_n(\sqrt{n-1} \cot \theta) \]

Cette relation permet donc le calcul explicite de la densité de probabilité de \( \theta \) en fonction de la densité \( p_n(\theta) \).

On a aussi :

\[ G_n(S/N; \theta) = \sqrt{n-1} \tilde{G}_n(\sin \theta) \tilde{H}_n(\sqrt{nS/N} \cot \theta) \]

\[ = \sin \left( \frac{1}{2} \theta \right) \exp \left( \frac{1}{2} \sin \theta \theta \right) \sin \theta \theta \]

Nous avons calculé dans les paragraphes II.2 et II.3 des expressions exactes ou approximatives des deux facteurs qui apparaissent dans l'expression (3) de la probabilité d'erreur. Pour les besoins du calcul numérique, nous avons exploité la remarque, faite au paragraphe II.3, que \( G_n(S/N; \theta) \) est la densité de probabilité de \( \theta \), pour transformer (3) en la formule (17) qui a été systématiquement employée. Elle permet en effet d'obtenir directement par intégration une quantité qui est généralement petite, alors que (3) conduirait à calculer numériquement une intégrale presque égale à l'unité,
que l'on devrait retrouver de 1 pour obtenir la grandeur pertinente, au détriment de la précision.

D'autre part, pour le calcul de $F_{n}(R; \theta)$, il est apparu avantageux de transformer (6) en produit infini, soit :

\begin{equation}
F_{n}(R; \theta) = \left(1 - \sum_{i=1}^{n} \omega_{k}(\theta) \right) \prod_{k=1}^{\infty} \exp \left[ \frac{- (M-1) \sum_{i=1}^{\infty} \omega_{k}(\theta)}{\kappa} \right]
\end{equation}

où le calcul numérique a été limité à un nombre fini de termes.

L'emploi des expressions exactes (25) et (26) n'a été possible que pour des valeurs relativement petites du nombre $n$ de dimensions et du taux d'émission $R$ (c'est-à-dire $R < 2 \ln(2)$). Nous avons pu tracer des courbes de dimensions et des taux d'émission supérieurs en remplaçant les expressions exactes par l'approximation (4-6) du premier facteur et par l'approximation gaussienne du second facteur, de moyenne (22) et de variance (23). Le temps de calcul en a été considérablement réduit mais la précision a diminué, principalement à cause de l'approximation gaussienne du second facteur.

La figure 1 représente les deux facteurs $F_{n}(R; \theta)$ et $G_{n}(S/N; \theta)$. Quelques résultats des calculs de la probabilité d'erreur par mot en fonction du rapport signal à bruit sont présentés sur la figure 2. À titre d'exemple.

Une autre présentation des résultats du calcul selon (7) utilise les paramètres normalisés suivants :
- le nombre de dimensions par unité binaire d'information $\nu = n / \ln(2)$, $R$ étant défini par (5);
- le rapport signal à bruit normalisé $\rho = E_{b}/N_{0}$ défini comme le rapport de l'énergie de signal reçue par unité binaire d'information $E_{b}$ à la densité spectrale unilaurent du bruit $N_{0}$, soit pour une constellation plane, avec un rapport signal à bruit $S/N = \rho = n E_{b} / 2 N$.

L'intérêt principal des paramètres $\nu$ et $\rho$ réside dans leur caractère universel pour la comparaison des systèmes de communication en présence de bruit additif, gaussien et blanc. En particulier, la capacité du canal et son débit de couplage (transfert ici appelé rate) s'expriment en fonction de ces seuls, puisque la capacité est atteinte pour :

\begin{equation}
\rho = \frac{1}{2} \left(2^{\nu} - 1\right)
\end{equation}

et le débit de couplage pour une valeur double de $\rho$, soit :

\begin{equation}
\rho = n \left(2^{\nu+1} - 1\right)
\end{equation}

Si l'on représente ainsi les résultats obtenus pour un nombre de dimensions fini $n$ (d'où une probabilité d'erreur non nulle) par des points dans le plan $(\nu, \rho)$, ils peuvent être immédiatement comparés avec les limites asymptotiques (26) et (27). Cette présentation a été utilisée dans la figure 1 où les courbes tracées sont, outre (26) et (27), celles qui correspondent, pour $n$ donné, à une même probabilité d'erreur par mot.
III. PREVISION DE LA PROBABILITÉ D'ERREUR MOYENNE OBTENUE PAR CODAGE ALÉATOIRE ASSOCIÉ À UNE MODULATION REPRÉSENTANT LES SYMBOLES PAR UNE CONSTELLATION PLANE

III.1. Codage à énergie constante, codage et modulation à amplitude constante.

Le codage envisage jusqu’ici consistant à choisir $M$ points sur la surface de l’hypersphère à dimension défini par la restriction de l’énergie des signaux à une certaine valeur constante, avec une densité de probabilité uniforme, les choix successifs étant mutuellement indépendants. Nous déterminerons ce type de codage par codage aléatoire à énergie constante.

Envisageant le système de communication comportant un codage aléatoire dans un alphabet de $q$ éléments, chacun représenté par un point d’une constellation plane, nous n’avons pas conclu simplement à une distribution quasi aléatoire des distances euclidiennes qu’en supposant cette constellation symétrique, en ce sens que l’ensemble de distances de chacun des points par rapport à tous les autres est indépendant du point considéré. Cette condition de symétrie entraînerait que la constellation devait être obtenue par modulation de phase et donc que l’amplitude devait être constante. Nous déterminerons le codage de ce type par codage aléatoire à amplitude constante.

Les signaux obtenus par codage aléatoire à amplitude constante appartiennent évidemment à l’ensemble des signaux à énergie constante, mais ils n’en constituent qu’une sous-ensemble, à l’intérieur duquel est restreint le choix des signaux du repertoire employé, ou code (la quantification, c’est-à-dire la restriction des signaux à un nombre fini de localisations possibles, ne sera abordé qu’au paragraphe III.4.).

Nous montrons au paragraphe III.2. que la restriction à des signaux d’amplitude constante a peu d’influence sur la distribution des poids euclidiens. Les résultats du codage aléatoire à énergie constante, exposés au paragraphe III.1, permettent donc une prévision approximative de ceux du codage aléatoire à amplitude constante. Nous y montrons aussi qu’il est possible d’assouplir la condition sur la symétrie des constellations (ce qui entraîne que l’énergie n’est plus constante qu’en moyenne) et d’aboutir là aussi à des résultats proches de ceux du codage aléatoire à énergie constante.

III.2. Comparaison du codage à amplitude constante et du codage à énergie constante.

Nous nous proposons ici de comparer les distributions des distances euclidiennes carrées obtenues par codage
aléatoire à énergie constante d'une part, à amplitude constante d'autre part. Nous allons d'abord étudier cette distribution dans le cas du codage à énergie constante.

### III.2.1. Distribution des distances euclidiennes carrées obtenues par codage aléatoire à énergie constante.

La distribution des distances euclidiennes carrées obtenues par codage aléatoire à énergie constante, par rapport à un point de référence arbitraire à la surface de l'hypersphère, peut être déduite de celle de l'angle $\theta$ introduit au paragraphe II.1. En effet, la fonction $\omega_n(\theta)$ est l'angle solide normalisé d'un cône de demi-angle au sommet égal à $\theta$. Le codage aléatoire est effectué avec une densité uniforme par rapport à cet angle solide. La dérivée de $\theta$ est donc :

$$ p(\theta) = \omega_n'(\theta), \quad 0 \leq \theta \leq \pi. $$

Par ailleurs, en distinguant par le rayon de l'hypersphère, la distance entre deux points de sa surface vu de son centre sous l'angle $\theta$ est $d = 2r \sin(\theta/2)$. En posant $\delta = \delta^2$, on a :

$$ p(\delta) = |\delta|^3 |p(\theta)| = \omega_n'(\theta)|\delta(\theta)|, \quad 0 < \delta < 4r^2. $$

La deuxième équation d'après [5, page 294, relation 3.221], on obtient :

$$ p(\delta) = \frac{1}{2} \sin\left(\sin^{-1}(\delta/2r)\right), \quad 0 \leq \delta < 4r^2. $$

Le premier facteur de (28) est d'après (2) égal à :

$$ \omega_n(\theta) = \sin\theta^{n-1} |\sin n\theta|, $$

où $|\sin n\theta|$ est une constante de normalisation définie de la dérivation de $\omega_n(\theta)$, soit :

$$ |\sin n\theta| = \int_0^\pi \sin^{n-1}(x) \, dx. $$

Cette intégrale définie est, d'après [5, page 391, relation 3.221], égale à :

$$ |\sin n\theta| = 2^{n-3} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{n-1}{2}\right) = 2^{n-3} \frac{\Gamma(n-1)}{\Gamma(n/2)} $$

où $B(\ldots)$ est la fonction bêta de Euler, telle que $B(x, y) = \Gamma(x) \Gamma(y) / \Gamma(x + y)$ et |

$$ B(\ldots) = \frac{\pi}{\Gamma(n/2) \Gamma(n/2)}. $$

En introduisant la distance euclidienne carrée normalisée $z^2 \delta^2/(4r^2) = \sin^2(\theta/2)$, on a alors $\sin(\theta) = 2\sqrt{z^2 \delta^2/(4r^2)}$, et (29) devient :

$$ \omega_n(\theta) = 2^{n-3} \Gamma(n-1)/\Gamma(n/2). $$

Ainsi calculé les deux facteurs de (28), on obtient finalement la distribution distante euclidienne carrée, compte tenu de (30) :

$$ p(\delta) = \frac{1}{4r^2} |\sin(n-1)\delta|^{n-3/2} \Gamma(n-1)/\Gamma((n-1)/2), \quad 0 < \delta = \delta^2/r^2 < 1. $$

La moyenne de $\delta$ est manifestement égale à $1/2$, donc celle de la distance euclidienne carrée $\delta^2$ est égale à $1/2$. D'après (31), la variance de $\delta$ a pour expression :

$$ \sigma^2(\delta) = 4r^2 \Gamma(n-1)/\Gamma((n-1)/2). $$

On retrouve ainsi la formule de [5, page 294, relation 3.221].

Même en utilisant le dernier facteur de (32), on obtient :

$$ \sigma^2(\delta) = 4r^2 \Gamma(n-1)/\Gamma((n-1)/2). $$

L'identité rappelée dans (A4) (annexe A) et l'identité $\Gamma(x+1) = x\Gamma(x)$ appliquée à $n = n/2$ conduisent finalement à l'expression cherchée de la variance :

$$ \sigma^2(\delta) = 4r^2/\pi. $$

Cette expression est étonnamment simple. Ce calcul sert plutôt de vérification à celui de la densité de probabilité (33) de $\delta$, car (34) peut être établie beaucoup plus facilement en remarquant que $\delta = 4r^2 \sin(\theta/2) = 2\sqrt{\sin\theta}$. La moyenne de la variable aléatoire $\cos(\theta)$ est nulle ; sa variance est donc égale à l'espérance de son carré. Celle-ci est immédiatement calculée en remarquant que le cosinus de l'angle de deux vecteurs dont l'extrémité est choisie avec une densité uniforme sur l'hypersphère de rayon $R$ centrée sur leur origine commune, soit $u = (u_1, u_2, \ldots, u_n)$ et $v = (v_1, v_2, \ldots, v_n)$, est égal à leur produit scalaire. L'un de ces vecteurs, soit $u_0$, peut être pris sans restriction de généralité sur un axe. Or, $\sum_{i=1}^n v_i = 0$ et, par raison de symétrie, l'espérance de $v_i^2$ vaut $1/n$ quel que soit $i$ ait donc que celle de $\cos(\theta)$.}

### III.2.2. Distribution des distances euclidiennes carrées obtenues par codage aléatoire à amplitude constante et sa comparaison au cas du codage à énergie constante.

Dans le cas où l'amplitude des signaux de la constellation est constante, c'est-à-dire où la modulation de phase est employée, la distribution des carrés des distances euclidiennes entre les points de la constellation
plane peut être déduite de (31) en y faisant \( n = 2 \), soit, pour une amplitude \( a \):

\[
\mu \theta (\delta) = \frac{1}{\sqrt{\pi} \sqrt{a^2 - \delta}} \quad \delta \in (0, a^2).
\]

D'après (34), la variance de \( \delta \) est égale à \( 2a^4 \). Quand les points d'une même constellation plane sont choisis au hasard et indépendamment les uns des autres, la distribution des poids excentriques associés aux mots ainsi obtenus dans l'espace à \( n = 2 \) dimensions est le produit de convolution fois de (35) par elle-même. C'est une expression compliquée, mais la variance de \( \delta \) est égale à \( 2a^4 \) fois celle du poids excentrique dans l'espace à 2 dimensions, soit \( 2a^4 = ma^2 \). Le théorème de passage vers la loi normale énumère que la distribution est bien approchée, si \( f \) est suffisamment grand, par une gaussienne ayant même moyenne et variance. Avec \( n = 30 \) et une quantification à 16 étapes de phase, la simulation montre que cette gaussienne est déjà une bonne approximation de la distribution exacte, malgré la modicité de ces nombres, qui correspondent par ailleurs aux paramètres des codes de Reed-Solomon de longueur 15 construits sur l'alphabet de taille 16, qui est servi d'exemple dans [3].

III. Utilisation de constantes non symétriques.

On peut réduire la condition que les signaux à \( n \) dimensions soient tous de même énergie, en utilisant des constellations planes qui ne respectent pas la symétrie de la distribution des distances équilatères, par exemple obtenues par modulations d'amplitude en quadrature (MQQ). Une difficulté provient du fait que les poids excentriques ne suffisent plus à déterminer la distribution des distances, mais qu'il est nécessaire d'examiner tous les couplés possibles de points. Des moyens de calculer cette distribution sont donnés pour des codes de référence, en particulier pour les signaux MQQ, mais qui peuvent être généralisés à une constellation quelconque, ont été étudiés dans [8, 9]. La justification théorique de cet assouplissement de la condition de symétrie et donc de l'hypothèse d'énergie constante, réside dans le phénomène de diffusion des distributions de phasé avec le nombre de dimensions selon [6, 10]. Si le nombre des dimensions est suffisamment grand, la dispersion de l'énergie des signaux peut être négligée et les résultats pertinents au cas de l'énergie constante restent approximativement valables.

III.3. Prise de la probabilité d'erreur moyenne obtenue par codage aléatoire avec amplitude constante, en présence de fluctuations d'amplitude.

En l'absence de fluctuations d'amplitude, le graphe III.2 montre que les résultats du paragraphe II constituent une prévision conviviale de ceux qui peuvent être attendus d'un codage aléatoire associé à une modulation à enveloppe constante, pour le dechiffrement optimal à vraisemblance maximale. On y supposant le rapport signal à bruit assez petit pour que l'effet de la quantification à l'émission puisse être négligé. En maintenant cette hypothèse, nous allons examiner comment ces résultats pourront être transposés au cas où la réception est effectuée en présence de fluctuations d'amplitude.

Le paramètre \( a \) dans (18) devient alors une variable aléatoire. Nous considérerons seulement le cas où la constellation utilisée est plane et d'amplitude constante : il s'agit donc d'une modulation de phase. Nous supposons que les fluctuations du canal entraînent que l'amplitude du signal reçu est distribuée selon la loi de Rayleigh. Nous supposons de plus qu'est effectué un entraînement parfait, ce qui signifie que les amplitudes associées aux différents symboles d'un même mot du code sont des variables aléatoires mutuellement indépendantes. Nous avons alors, pour un code de longueur \( f \), \( n = 2 \), et l'écart de probabilité de \( \epsilon \) est :
On obtient la moyenne de $u$ par les mêmes procédés qu'au paragraphe II.5., soit :

$$\mu_u = \frac{\Gamma(t + 1/2)}{\Gamma(t)} \sqrt{2/N} = \frac{1}{2} \sqrt{2/N}$$

Son moment d'ordre 2 est égal à $2S/N$, d'où l'on déduit sa variance :

$$\sigma_u = \frac{\sqrt{2S/N}}{4\sqrt{3}}$$

Dans (39) et (40), $B_2$ est le premier coefficient de la série (37), dont l'expression est donnée par (89) dans l'annexe B.

La fonction $F(-1)$ de l'intégrande, dans (38), s'obtient d'après (19) en intégrant la densité de probabilité $p_4(u)$ sous sa forme exacte (B7) ou approximative, par exemple (B16) où on obtient l'approximation gaussienne ayant même moyenne et variance que (816). Dans ces deux expressions, le paramètre $u$ est aléatoire, de densité de probabilité $p_4$. En intégrant l'intégrale des intégrations, on peut conserver (19) mais en y remplaçant $p_4(u)$ par sa moyenne $u$ sur laquelle $p_4(u)$ est calculé à partir de (18) compte tenu de (37). Il ne paraît pas exister d'expression simple de cette moyenne et nous avons donc eu recours à l'intégration numérique pour la calculer. On peut remplacer la distribution (37) par son approximation gaussienne de même moyenne et variance pour obtenir une expression approchée plus facile à calculer.

La variance (40) tend vers 0 quand la longueur $L$ du code tend vers l'infini, car $B_2$ se rapproche alors du $L$. Comme on le voit sur les figures, les variations du signal reçu modifient peu les résultats, par rapport au cas où son amplitude est constante, si le nombre des dimensions est suffisamment grand. Les fluctuations sont encore plus petites pour un rapport signal/surbruit constant, égal au rapport signal/surbruit moyen, et dont la variance (40) tend vers 0 quand $L$ augmente indéfiniment.

La densité de probabilité de l'angle entre le vecteur cinétique et le vecteur reçu, ainsi calculée, est celle affectée à la fluctuation de Rayleigh a été représentée en fonction du rapport signal/surbruit moyen sur la figure 1, pour un nombre de dimensions donné.

La comparaison des courbes tracées sera et avec fluctuations montre que la présence des fluctuations réduit un peu l'angle pour lequel le maximum de la densité est atteint, tandis que la variance de la distribution est une quantité augmentée. Ces différences tendent à diminuer quand le nombre des dimensions augmente et, quand $n$ tend vers l'infini, $h_0$ tend vers 0 et la variance (37) vers une densité de Dirac centrée sur $s = \sqrt{2S/N}$, comme en l'absence de fluctuation. Le même comportement asymptotique est donc observé, que les fluctuations soient ou non présentes.

### III.4. Influence de la quantification.

Nous avons admis jusqu'ici que nous pouvions négliger l'influence de la quantification. Pour préciser dans quelles limites cette approximation est justifiée, nous pouvons assimiler la distribution de l'écart entre le point obtenu par codage aléatoire et le point de la constante à une distribution uniforme dans chaque dimension. Alors, la variance du bruit de quantification vaut $\sigma_2^2/12$ par dimension, en désignant par $\sigma_2$ la distance minimale entre les points de la constellation. Pour la modulation de phase, on a environ (pour $q$ grand) $\sigma_3 = \sqrt{q}$, étant le rayon de la constellation, le bruit n'ayant qu'une dimension. Pour la modulation d'amplitude en quadrature, $\sigma_4 = \sqrt{2}$, où $a^2$ est le rayon quadratique moyen, égal à la moyenne des carrés des modules des vecteurs de la constellation; le bruit affecte également les deux dimensions. On obtient ainsi un rapport signal au bruit de quantification de l'ordre de $20 \log_{10} \left( \frac{2}{10 \log_{10} \frac{3}{5.17}} \right) = 10 \log_{10} \frac{3}{5.17}$ dB pour la stp et de $10 \log_{10} \left( \frac{10 \log_{10} \frac{6}{7.78}}{10 \log_{10} \frac{6}{7.78}} \right) = 10 \log_{10} \frac{6}{7.78} \frac{7.78}{6} dB$ pour la MAQ (Fig. 4). On peut estimer les variations de précision qui ne dégradent pas l'effet de la quantification si le rapport signal

**Fig. 4.** Rapport signal à bruit de quantification approximé en fonction de la taille $q$ de l'alphabet, et de la modulation de phase (top) et de la modulation d'amplitude en quadrature (bottom). Les prévisions des calculs du texte ne sont valables que si le rapport signal est plus grand que la quantisation du canal est inférieure à ce rapport.

Approximate signal-to-quantizing-noise ratio in terms of the alphabet size $q$ in phase modulation and in quadrature amplitude modulation (QAM). The predictions using the above formulas are valid only if the channel signal-to-noise ratio is smaller than than the ratio.
à bruit dans le canal est inférieur au rapport signal à bruit de quantification. La comparaison de ces valeurs avec les rapports signal à bruit déduits de la figure 3 montre qu'il en est ainsi aussi pour le plus souvent, sauf pour de très petits nombres de dimensions par unité binaire d'information, n, correspondant à des densités de points dans l'espace à n dimensions.

Une manière radicalement différente de tester compte de la quantification consiste à supposer d'abord que les points considérés appartiennent à un réseau à n dimensions (réseau devant s'entendre au sens cristallographique du terme). Les performances asymptotiques pertinentes à ce cas et le codage aléatoire sur les points d'un réseau ont été étudiés [7, 10], mais sous des hypothèses différentes puisque l'énergie n'y est pas supposée constante et moyenne. Dans ce cas, le phénomène de condensation des sphères se manifeste et joue un rôle prépondérant dans le comportement asymptotique des codes dont la longueur tend vers l'infini.

IV. CONCLUSION

Reprenant des travaux de Shannon, nous avons calculé la probabilité d'erreur du codage aléatoire dans l'espace euclidien avec décodage optimal au sens de la vraisemblance maximale, sur le canal à bruit additif, gaussien et blanc, pour un nombre fini de dimensions et une énergie constante. Nous avons montré alors que des procédés explicites, combinant un codage séparable à distance maximale, par exemple de Reed-Solomon, avec une application certaine des symboles de l'alphabet sur les points d'une constellation plane, initient le codage aléatoire de ce type. Les calculs présentés dans cet article peuvent servir de base à l'estimation des résultats attendus d'un système de communication employant ces procédés. Nous traitons ultérieurement de leur mise en œuvre.

ANNEXE A

Calculs relatifs au premier facteur de (3).


Nous avons d'abord montré que les expressions (11a) et (11b) de \( f_{n-1} \), qui dépendent de la partie de n, peuvent être remplacées par l'unique expression (12).

En effet, si n est pair, on peut poser \( n = 2m + 2 \) et recopier (8a) sous la forme:

\[
f_{n-1} = \frac{2^{2m+1}}{\pi} \left( \frac{m}{n} \right)^{2m} \sum_{i=0}^{m-1} \left( \frac{m-x}{m} \right)^{2n} \frac{(m-x)^{2m}}{(2m-1)!}.
\]

À la somme sur i est égale à 1/2 quel que soit \( m \), soit:

\[
\begin{align*}
(A1) & \quad \sum_{i=0}^{m-1} (-1)^i \frac{(m-n)^{2i}}{(2m-1)!} = \frac{1}{2}, \\
(A2a) & \quad f_{n-1} = \frac{2^{2m}}{\pi} \left( \frac{m}{n} \right)^{2m} \frac{1}{(2m-1)!} \sum_{i=0}^{m-1} \left( \frac{m-n}{m} \right)^{2i} \frac{(m-n)^{2m}}{(2m-1)!}.
\end{align*}
\]

Cette sommation identique est démontrée dans le paragraphe suivant et en a donné:

\[
\begin{align*}
(A2b) f_{n-1} & = \frac{2^{2m}}{\pi} \left( \frac{m}{n} \right)^{2m} \frac{1}{(2m-1)!} \sum_{i=0}^{m-1} \left( \frac{m-n}{m} \right)^{2i} \frac{(m-n)^{2m}}{(2m-1)!} = \frac{2}{n-1}.
\end{align*}
\]

Dans le cas où \( n = 2m + 1 \), des moyens similaires exposés aux paragraphes A.2 et A.3 permettent de calculer les sommes en numérique et dénominateur de (8b), soit respectivement (A1) et (A1'), d'où:

\[
\begin{align*}
(A3) & \quad \Gamma(i + 1) = \frac{2^{i+1}}{\sqrt{n}} \Gamma(i + 1) \\
(A4) & \quad \Gamma\left(i + \frac{1}{2} \right) = \frac{2^{i}}{\sqrt{n}} \Gamma(i + \frac{1}{2}) \Gamma\left(i + \frac{1}{2} \right) = \frac{2}{n-1}.
\end{align*}
\]

Si l'on introduit la fonction factorielle \( \Gamma(i) \) d'Euler, (A2b) devient (12) puisque \( \Gamma(i + 1) = i! \) pour i entier. L'identité:

\[
\Gamma(i + \frac{1}{2}) = \frac{2^{i}}{\sqrt{n}} \Gamma\left(i + \frac{1}{2} \right) \Gamma\left(i + \frac{1}{2} \right),
\]

et (3) conduisent à:

\[
\Gamma\left(i + \frac{1}{2} \right) = \frac{2^{i}}{\sqrt{n}} \Gamma\left(i + \frac{1}{2} \right) \Gamma\left(i + \frac{1}{2} \right),
\]

identité qui permet de transformer aussi (A2b) en (12). Le coefficient \( c_{i-1} \) peut donc être exprimé par (12) quelle que soit la partie de n, comme on se proposait de le montrer.


Nous sommes maintenant en mesure de nous concentrer sur le développement de la formule de relation (A1). Nous avons d'abord noté que la fonction \( f_{n-1}(x) \) ainsi définie par récurrence:

\[
f_{n-1}(x) = x f_{n-1}(x),
\]

ou \( f_{n-1}(x) \) désigne la dérivée première de \( f_{n}(x) \) et où \( f_{n}(x) = f(x) \) est une fonction indéfiniment dérivable donnée.

On peut donner de \( f_{n}(x) \) l'expression explicite:

\[
(A3) f_{n}(x) = \sum_{j=0}^{n} c_{j} f^{(j)}(x),
\]

où \( f^{(j)}(x) \) désigne la dérivée j-ième de \( f(x) \) et où les coefficients \( c_{j} \) sont calculés selon la formule de récurrence:

\[
c_{j+1} = c_{j} + \tfrac{1}{1},
\]

en partant de \( c_{j} = 1 \) et en conservant que \( c_{j} = 0 \) si \( j = 0 \) ou si \( j > n \). On remarque que cette formule de récurrence entraîne \( c_{n} = c_{n-1} = 1 \) quel que soit i.

Nous allons maintenant appliquer ce résultat à la fonction \( f(x) = (1 - x)^{i} \), où i est un entier positif quelconque. On a alors:

\[
\text{Annexes de l'article, 46, af 1-2, 1993.}
\]


\[ f^{(i)}(x) = \begin{cases} (-1)^i \frac{1}{t-i+1} (1-x)^{t-i+1} & \text{si } i \leq t, \\ 0 & \text{sinon.} \end{cases} \]

En effet, on a :

\[ f^{(i)}(x) = (-1)^i f^{(i-1)}(x) \]

quel que soit \( z \), ce qui entraîne :

\[ f^{(t)}(x) = 0. \]

si \( i > t \).

Pour la valeur \( z = 1 \) de l'argument, on a donc :

\[ f^{(i)}(1) = \begin{cases} 1 & \text{si } i \neq t, \\ -(-1)^i f^{(i)}(1) & \text{si } i = t. \end{cases} \]

et, d'après (A4) :

\[ f^{(1)}(1) = (-1)^i f^{(i)}(t). \]

En particulier, on a \( f^{(i)}(1) = 0 \) si \( i < t \), alors :

\[ f^{(i)}(1) = (-1)^i f^{(i)}(t). \]

On peut écrire la fonction \( f(x) \) en la développant, soit :

\[ f(x) = \sum_{j=0}^{i} (-1)^j C_j x^j, \]

on a alors :

\[ f^{(i)}(x) = \sum_{j=0}^{i} (-1)^j i C_j x^{j-i}, \]

d'où :

\[ (-1)^i C_j x^{j-i} = 0, \text{ si } i < t, \]

et, d'après (A6) :

\[ \sum_{j=0}^{i} (-1)^j i C_j x^{j} = (-1)^i i. \]

En remplaçant les coefficients du binôme dans (A8) par leur expression \( C_j = \frac{j!}{(j-i)! i!} \), on obtient :

\[ \sum_{j=0}^{i} (-1)^j i C_j x^{j} = (-1)^i i. \]

Soit maintenant un nombre réel quelconque \( u \). Nous allons montrer que :

\[ \sum_{j=0}^{i} (-1)^j \frac{(x-u)^j}{j!} \sum_{k=i}^{j} C_k (1-x)^{j-k} = (-1)^i. \]

En effet, on obtient en développant le binôme du premier membre :

\[ \sum_{j=0}^{i} (-1)^j \frac{1}{j!} \sum_{k=i}^{j} C_k (1-x)^{j-k} = \sum_{j=0}^{i} (-1)^j \frac{1}{j!} \sum_{k=i}^{j} C_k. \]

D'après (A9), la somme sur \( k \) au second membre est toujours nulle sauf pour \( k = i \), auquel cas elle vaut \((-1)^i\), ce qui démontre (A10). En y faisant \( t = 2n+1, a = -n \), on obtient le double de la somme au premier membre de (A1), ce qui démontre cette identité.

A.3. Expression des sommes en numérateur et dénominateur de (8b).

L'identité (A10) permet aussi de calculer la somme \( s_n \), en numérateur de (8b). En effet, si l'on pose \( n = 2m+1, \) cette somme devient :

\[ \sum_{r=0}^{2m} (-1)^r C_r 2^{2n-2m-1} \]

\[ = (2m-1)2^{2n-1} - \sum_{r=0}^{2m-1} (-1)^r C_r \frac{2^{2n-1}}{2^{2m-1}} \frac{2-r}{2^{n-1}}. \]

La somme sur \( r \) au second membre est égale à \( \frac{1}{2} \), d'après (A10) (c'est le résultat homologue de (A1) pour \( n \) impair). On a donc :

\[ (A11) \quad s_n = (2m-1)2^{2n-3} = (n-2)2^{2n-3}. \]

Pour évaluer la somme en dénominateur de (8b) lorsque \( n \) est impair, nous remarquons que la fonction \( f(x) = \frac{1}{x-x^n} \) a pour développement :

\[ f(x) = \sum_{j=0}^{i} (-1)^j C_j x^{j-i-n}, \]

de sorte que la somme cherchée, soit \( s_n \), est aussi à la valeur prise pour \( x = 1 \), par la primitive \( I \) de la fonction :

\[ g(x) = -\frac{f(x)}{2x} = \frac{1}{2x} \left( 1 - \frac{1}{x} \right), \]

avec \( l = 2 \). Pour calculer cette primitive, nous faisons le changement de variable \( x = \cos u \), d'où :

\[ 2l = \int \frac{\sin u + 1}{\cos u + 1} du. \]

D'après la relation 2.514 de [5], en se limitant au terme qui ne s'annule pas avec \( u \), on a :

\[ (A12) \quad 2l = (1/\sin x) \left( \sin x + 1 \right) \int \frac{\sin u + 1}{\cos u + 1} du. \]

Finallement, d'après (11b), (A11) et (A12), on obtient :

\[ f_{n-1} = (-1)^{n-1} \frac{1}{2(n-1)} \frac{n-2}{2(n-1)} \]

c'est-à-dire la relation (A2a) que l'on se proposait d'établir.

ANN. TELECOMB. 48, n° 1-2, 1990
ANNEXE B

Calculs relatifs au second facteur de (8)

B.1. Calcul de la probabilité (8).

La variable \( r = \sqrt{\sum \frac{z^2}{n}} \) a une distribution en \( \chi^2 \), c'est-à-dire qu'elle a pour densité :

\[
(p_0(r)) = \frac{m}{2\pi} \frac{m^{m/2}}{2^{m/2}} \exp(-m r^2/2).
\]

Quant à \( z = z + e \), c'est une variable gaussienne de variance égale à 1 et de moyenne 0. Comme ces deux variables sont indépendantes, la densité de probabilité conjointe de \( r \) et \( e \) est égale au produit de leurs densités, soit :

\[
p_{0,0}(r, e) = \frac{m^m}{2\pi} \frac{m^{m/2}}{2^{m/2}} \exp(-m r^2/2) \exp(-e^2/2).
\]

Faisons le changement de variable :

\[
R = \frac{(1 + z^2)}{\sqrt{a^2 + u^2}} = \frac{(1 + z^2)}{\sqrt{a^2 + u^2}}, \quad R > 0,
\]

de jacobien \( \frac{D(R, u)}{D(x, y)} = (1 + z^2)/R \). La densité conjointe de \( R \) et \( u \) est donc :

\[
p_{0,0}(R, u) = \frac{m^m}{2\pi} \frac{m^{m/2}}{2^{m/2}} \exp\left(\frac{R^2 m^2 - 1}{2(1 + z^2)}\right) \exp\left(-\frac{m u^2}{2(1 + z^2)}\right).
\]

La densité de probabilité de la variable \( u \) s'obtient en intégrant la précédente par rapport à \( R \) à l'infini. On déduit de [5], relation 3.462.1, p. 337 :

\[
p(u) = \frac{m^m}{2\pi} \frac{m^{m/2}}{2^{m/2}} \exp(-m u^2/2) \exp\left(\frac{m u^2}{2(1 + z^2)}\right)
\]

où la fonction \( I_{\nu}(\cdot) \), désignée par parabolique cylinder function, est définie aussi dans (3), paragraphes 9.24 et 9.25, p. 1094 :

L'expression de l'intégrale dans (A12) se déduit de la relation 2.511-3 de [5] pour \( u = 0 \), c'est-à-dire \( x = 1 \), soit :

\[
(I_{\nu}(x)) = 2^{\nu/2} \exp(-x^2/4) \left(\frac{x^2}{\Gamma((\nu+1)/2)}\right) \Phi\left(\frac{-x^2}{4}, \frac{x^2}{4}, \frac{1}{2}\right) \Phi\left(\frac{-x^2/2}{4}, \frac{x^2/2}{4}, \frac{1}{2}\right)
\]

est la fonction hypergéométrique confluite. On a donc, en prenant d'après (17) \( m = n - 1 \) :

\[
p(n) = \frac{(n-1)(n-1)!}{2^{n-1}(\Gamma(n+1/2)^2) (n-1)^{n/2}}
\]

et:

\[
\Phi(\nu, \gamma; x, y) = \frac{\Gamma(\nu+1/2)}{\Gamma(\gamma+1/2)} x^\nu y^y
\]

\[
\Phi(\nu, \gamma; x, y) = \frac{\Gamma(\nu+1/2)}{\Gamma(\gamma+1/2)} x^\nu y^y
\]

est la fonction hypergéométrique confluite. On a donc, en prenant d'après (17) \( m = n - 1 \) :

\[
p(n) = \frac{(n-1)(n-1)!}{2^{n-1}(\Gamma(n+1/2)^2) (n-1)^{n/2}}
\]

et:

\[
\Phi(\nu, \gamma; x, y) = \frac{\Gamma(\nu+1/2)}{\Gamma(\gamma+1/2)} x^\nu y^y
\]

L'identité (B1) permet de récrire cette formule :

\[
(\nu) p(n) = \frac{(n-1)(n-1)!}{2^{n-1}(\Gamma(n+1/2)^2) (n-1)^{n/2}}
\]

\[
\frac{\Gamma(\nu+1/2)}{\Gamma(\gamma+1/2)} x^\nu y^y
\]

\[
\frac{\Gamma(\nu+1/2)}{\Gamma(\gamma+1/2)} x^\nu y^y
\]

En posant :

\[
z = \frac{an}{\sqrt{a^2 + n - 1}}
\]

(B6) devient:

\[
(\nu) p(n) = \frac{(n-1)(n-1)!}{2^{n-1}(\Gamma(n+1/2)^2) (n-1)^{n/2}}
\]

\[
\frac{\Gamma(\nu+1/2)}{\Gamma(\gamma+1/2)} x^\nu y^y
\]

où la fonction \( H_n(z) \) est définie par la série :

\[
H_n(z) = \sum_{n=0}^{\infty} h_n z^n
\]

dont les coefficients sont :

\[
H_n(z) = \frac{1}{(\Gamma(n+1/2)^2) (n-1)^{n/2}}
\]

où la fonction \( \Gamma(\nu; x, y) \), désignée par parabolique cylinder function, est définie aussi dans (3), paragraphes 9.24 et 9.25, p. 1094 :
les autres coefficients se déduisant des deux premiers par récurrence 
suite, pour $m$ entier positif :

$$h_{2m} = h_{2m-1} \frac{n+2m-2}{m(2m-1)}$$
$$= h_{2m-1} \frac{n(2m-1)(n+1)}{(2m-1)(2m-3)} \frac{n}{n+1}$$
$$= \frac{n}{(n+1)(n+3)(n+5) \ldots (n+2m-1)}$$

Les deux dernières expressions de $h_n$ ne comportent que des factorielles entières pour $n$ pair et impair, respectivement. Quelle que soit la parité de $n$, l'une d'entre elles permet de calculer $h_n$. Tous les autres coefficients s'obtiennent alors par récurrence, d'où $H_n(z)$ et $\mu_n(z)$ selon (B1), la probabilité (18) s'en déduit par intégration, conformément à (19).

### B.2. Approximation obtenue en remplaçant la densité du $\chi^2$ par sa approximation gaussienne.

Pour $n$ assez grand, il est connu que la densité d'une variable ayant une distribution en $\chi^2$ est bien approchée par une gaussienne. Nous pouvons donc obtenir une approximation de la densité (B1) en la remplaçant par la gaussienne ayant même moyenne et variance. Pour cela, il nous faut d'abord calculer la moyenne $\mu$ et la variance $\nu$ d'une variable aléatoire $R$ ayant une densité de la forme (B1).

La moyenne $\mu$ d'une telle variable est par définition :

$$\mu = \frac{n}{2} \int_0^{\infty} r^n \exp(-nr^2/2) \, dr.$$  

Si $n$ est impair, la valeur de l'intégrale se déduit de [5], relation 3.461-3, p. 357, et on obtient alors :

$$\mu = \frac{\sqrt{\pi}}{\sqrt{n}} \left( \frac{n}{2} \Gamma \left( \frac{n+1}{2} \right) \right)$$  

la deuxième égalité est obtenue en substituant $n-1 \rightarrow n-1$. $h_n$, $h_{2n}$ donné par (B9), est le premier coefficient dans le développement en série (B8). En combinant la relation 3.461-2 de [5] et (B1), on voit que (B11) est vraie aussi pour $n$ pair et donc quel que soit $n$.

Le moment d'ordre 2 de $R$ est égal à 1, donc cette variable a pour variance $\nu = 1 - \mu^2$, d'où :

$$\nu = 1 - \mu^2 = 1 - \frac{\mu^2}{2} \frac{1}{\pi} \frac{\Gamma \left( \frac{3}{2} \right)}{\Gamma \left( \frac{1}{2} \right)}.$$  

La moyenne $\mu$ et la variance $\nu$ ne dépendent l'une et l'autre que du nombre des dimensions $n$ de l'espace 
des signaux. L'application à (B9) de la formule de 
Stirling montre que $h_n$ varie approximativement comme $\nu^{-1/2}$ donc $\nu$ comme $1/n$ et $\mu$ comme $1/\sqrt{n}$. Ainsi, quand $n$ tend vers l'infini, $\mu$ tend vers 1 et $\nu$ vers 0.

Une expression approximative de la densité de probabilité (B1) est donc :

$$p_\rho(T) \approx \frac{1}{\sqrt{2\pi \nu}} \exp(-T - \rho \mu \nu / 2)$$

où $\mu$ et $\nu$ sont données respectivement par (B11) et (B12).

L'équivalent approximatif de (B3) est alors :

$$p_{\rho, \xi}(T, x) \approx \frac{1}{2\pi \nu} \exp \left( -\frac{T - \rho \mu \nu}{2\nu} \right) \exp \left( -\frac{x^2}{2\nu} \right)$$

Le changement de variable (B3) conduit à :

$$p_{R, \alpha}(R, \alpha) \approx \frac{1}{2\pi \nu} \exp \left( -\frac{\mu^2}{2\nu} \right) R \exp \left( -\frac{R^2}{2\nu} \right) \exp \left( -\frac{\alpha^2}{2\nu} \right)$$

L'intégration de cette densité pour $R$ de 0 à $\alpha$ a pour résultat (B5), relation 3.462-3 p. 388 :

$$p_{\alpha}(\alpha) \approx \frac{1}{2\pi \nu} \exp \left( -\frac{\mu^2}{2\nu} \right) \exp \left( -\frac{\alpha^2}{2\nu} \right) \exp \left( -\frac{(\alpha + \mu)^2}{2\nu} \right)$$

ou, en simplifiant :

$$p_{\alpha}(\alpha) \approx \frac{\nu}{2\pi \nu} \exp \left( -\frac{\mu^2}{2\nu} \right) \exp \left( -\frac{\alpha^2}{2\nu} \right) \exp \left( -\frac{\alpha^2}{2\nu} \right) \exp \left( -\frac{\alpha^2}{2\nu} \right)$$

### BIBLIOGRAPHIE


**AN: TELECOMM., 48, no 1-2, 1995.**

BIographies

Gérard Bastaire est diplômé de l'École nationale supérieure des télécommunications d'ENST et est professeur à l'ENST depuis 1973, son domaine d'enseignement et de recherche est la théorie des communications, communication, codage de source et le canal, théorie de l'information.

Ricardo Magallanes de Orellana est né à Aracari (PR, Brésil), le 1er mai 1964. Il a obtenu le diplôme de l'Ingénieur en Métrologie en 1989 de l'Université de Río de Janeiro, Brésil. En 1993, il a obtenu le grade de Docteur en l'École nationale supérieure des télécommunications de Paris, France. Sa thèse traitait des communications parallèles. Sa thèse de thèse concerne les communications parallèles, le codeage de source et le canal, en particulier les modulations de turbo.