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Abstract — Homophonic sequence substitution is the
name given in this paper to the technique which consists
of substituting one-to-one a given finite {or semi-infinite)
sequence of symbols by another finite (or semi-infinite) se-
quence over the same alphabet but having a higher entropy
rate. It is proved that by sequentially encoding the out-
put of a discrete stationary and ergedic source with bina-
ry lossless codes makes the entropy rate of the resulting
encoded binary sequence asymptoticalily approach the val-
ue 1, therefore performing optimum homophonic sequence
substitution. The cleartext redundancy after £ consecutive
encodings is 1 — H(.5) bits per binary digit, where H(5) is
the entropy rate of the binary sequence resulting after the
k** encoding. A Markov source model is presented to de-
scribe the binary encoded sequences and to compute their
entropy rate.

1. Introduction

Source coding is a technique whose aim is to represent the
output of an information source with as few code digits per
source symbol as possible. In this paper we will consider
only lossless source coding in which case it is possible to
reconstruct ezactly the source output from its encoded rep-
resentation. We will concentrate our attention on binary
coding both for its practical importance and because the
generalizations to higher order alphabets are immediate.
We will consider the problem of removing the redundan-
cy of a message sequence with an alternative, and perhaps
complementary, approach to that in [3]. The distinguaish-
ing feature of our approach is that we neither resort to in-
tentional plaintext expansion, as in conventional (symbol)
homophonic substitution, nor to coding extensions of the
original source, as suggested by Shannon’s lossless source
coding theorem [1, p.69]. In Section 2 we present basic no-
tions of source coding and briefly review the main proper-
ties of uniquely decodable codes. In Section 3 we define the
Markov source associated with a rooted tree with probabil-
ities [5] and consider encoding the output of such a source
with a Huffman code. Tn Section 4 we introduce aliernaie
Huffman codes and give an example. Following [3] we will
call a sequence of D-ary random variables completely ran-
dom if each of its digits is statistically independent of the
preceding digits and is equally likely to take on any of the
D possible values. Finally, in Seciion 5 we show how to
perform homophonic sequence substitution and prove that
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a cascade consisting of Markov sources encoded by lossless
codes produces in the limit a completely random sequence.
The decoding operation is very simple and consists of ap-
plying the encoded binary sequence through a cascade of
k look-up tables {corresponding to the number k of iter-
ations), where the %, 1 < i < k, look-up table in the
cascade is a decoder for the {(k 4+ 1 — #{)** code. The nice
aspect in this approach is that the resulting implementa-
tion complexity remains stall, because it grows linearly
with the number of encodings, and there is no cleartext
expansion caused by the iterations. Of course the binary
sequence after the k** encoding will still have a redundan-
cy {measured in bits) which is equal to 1 — Hi(S) bits per
binary digit, where Hi(S) is the entropy rate of the binary
sequence after the £** encoding.
2. Source Coding Fundamentals

Let {7y, Us, ..., denote the output sequence of symbol-
s of a discrete information source. This source is said
to be stalionary if, for every positive integer L and ev-
ery sequence uj, ug,...,uz of letters from the source al-
phabet we have P(U/;, Us,.. L oup) =
P(Uig1, Uiga,..., Uigr = vy, ug,..., ug), for all i > 0.
A stationary source is said to be ergodic if the number
of times that the sequence w;, wus,..., ugz oceurs within
the source output sequence Uy, /2, ..., Unyp-1 of length
N+L—1, when divided by N, equals P{I/;, Uz, ..., UL =
uy, 2, ..., up) with probability 1 as N — oo [4]. In the
sequel we will considerer only discrete stationary and ergod-
ic sources (DSES) since they are general enough to model
any real information source. The source codes employed
in lossless source coding are called uriguely decodable codes
(2, p.48]. A sufficient condition for the unigue decodabili-
ty of a concatenation of codewords is that the encoding be
prefic-free, 1.e., that no codeword be the first part (prefix) of
another codeword. This prefix-free condition is equivalent
to the condition that a decoder be able to immediately rec-
ognize the end of a codeword without need to read the be-
ginning of the next codeword. Codes with this property are
called instanianeous codes [2, p.60]. A uniquely decodable
code is further said to be a compact code [2, p.66] whenever
its average codeword length is equal to or less than the av-
erage codeword length of all other uniquely decodable codes
for the same source and the same code alphabet.

Shannon’s lossless source coding theorem [1, p.89] im-
plicitly suggests that the only way for reducing redundancy
In a message to be transmitted or stored is by perform-
ing data compression, As the cryptographic community
very well knows that is not necessarily the case however,

o Up = uy, ug, ..
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Figure 1: Huffman tree.

as exernplified by homophonic substitution. Homophonic
subsitlution is a cryptographic technique for reducing the
redundancy of a message to be enciphered at the cost of
plaintext expansion. This definition coneerns homophonic
symbolsubstitution [3], however iterative souree coding can
he seen as a form of hemophonic substitution (homepkonic
sequence substitution) and not necessarily leads to cleartext
expansion.
3. Rooted Trees and Markov Sources

Very often we are interested in determining the probability
of single binary digits, or pairs of binary digits, etc., pro-
duced by a source code driven by a source. It turns out
that the compution of these probabilities, directly from the
code rooted tree with probabilities [5], is possible but be-
comes very complicated as the order of the statistics consid-
ered increases. We found a neater way for calculating these
probabilities by defining a representation of the code rooted
tree with probabilities by a Markov source. We define the
Markov source whose siates correspond one-to-one to the
nodes of the code tree, whose branches are labeled with the
same binary numbers as those in the corresponding branch-
es of the code tree and each state transilion probability is
given by the conditional probability of emitting a 0 {or a 1)
given the current state (or node in the code tree). A return
to state S; occurs whenever the last digit transmitted is
the last digit of a codeword. The example below is provid-
ed to illustrate the above description of a Markov source
and employs a Huffman code.

Exanple 1
Let S denote a discrete source with a four symbol alphabet
whose probabilities are .4, .3, .2 and .1, respectively. We
show in Figure 1 the Huffman tree and in Figure 2 the
corresponding Markov source for the given discrete source.
4. Alternate Binary Huffinan Codes

As far as source specific codes for source coding are con-
cerned Huffman codes are compact in the sense that a Huff-
man code for a specific DSES has an average codeword
length equal to or less than the average codeword length a-
mong all instantaneous codes for that source {2, p.77] with
the same code alphabet. We notice the well known Fact
that for a given DSES, in general, we can construet more
than one Huffman code, but that all such codes have the
same average codeword length.

In the construction of a binary Huffman code, or equiva-
lently, a binary Huffman tree, whenever two subtrees stem
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Figure 2: Markov source model.

out from a node a decision has to be made as to which
subtree we should label with a 0 and to which subtree we
should label with a 1. Whenever that decision is arbitrary
the resulting Huffman code is called an arbitrary Huffman
code [B]. Whenever the subtree of higher total probabili-
ty is always labeled with a 0, the resulting code is called
a 0-heavy Huffman code. We introduce next a third case
of interest that we call slternate Huffinan coding. Starting
from the root, whenever two subtrees stemming out from
the same node have identical probabilities we arbitrarily la-
bel one of thern with a 0 and the other with a 1. At the first
node whose two subtrees stemming out have different prob-
abilities, we label with a 0 the subtree of higher probability
and keep a record of that fact. At the next node whose two
subtrees stemming out have different probabilities we label
with a 1 the subtree of higher probability. This procedure
is applied over and over until the tree is traversed. Sum-
marizing, this subtree labeling rule keeps a record of which
label was given to the subtree of higher probability at the
last node visited whose asscciated subtrees had different
probabilities and alternates that labeling for the next node
whose associated subtrees have different probabilities. We
illustrate with a simple example the usefulness of alternate
Huffian coding.

Example 2
Consider a discrete memoryless source whose alphabet has
three symbols occurring with probabilities 4, .35 and .25,
respectively.

Probability | Alternate code | 0-heavy code
4 0 1
.35 10 00
.25 1i 01

The entropy per binary digit of the associated Markov
source model is identical for both codes and its value is
.974. The table below presents first order and second or-
der statistics for both codes. By computing for each code
the the absolute value of the difference between each oue of
the statistics in the table and the corresponding value for
a completely random source, and then adding the results



we see that the alternate code produces a smaller sum and
thus its digits are more rendom looking than those produced
by the 0-heavy code. This seems to be a property true in
general for alternate codes.

Alternate code | 0-heavy code
P(0) ABT8 59375
P(00) 1875 .35
P(01) 28125 .24375
P10} 28125 .24375
P(11) 25 1625

Definition: A uniquely decodable code is optimum if it is
both compact and its symbol statistics is the closest to that
of a completely random sequence among all compact codes
for that source.

5. Iterative Procedure

Let S dencte a DSES encoded using a compact bina-
ry prefix-free code. We chose to use an alternate Huffman
code 'y with average codeword length L, for that pur-
pose. The iterative procedure for performing homophonic
sequence substitution consists of parsing a concatenation of
codewords of € in blocks of r digits forming a source S
with 2" symbols. S7 1s then encoded with an alternate bi-
nary Huffman code Ca with average codeword length Lz, A
concatenation of codewords of Cy is then parsed in block-
s of = digits forming a source Sy with 2" symbols. S is
then encoded . . _etc. As we provein Theorem (1), at each
new step the entropy of the resulting binary sequence is
increased, if not the block size in the parsing is increased
to r+ | and the procedure continues. A stopping rule will
specify for a given application that, starting with r = 2,
the number of steps k is given by the smallest & for which
1 — Hi(5) <€ ¢, where ¢ € 1 is a small positive quanti-
ty. Our proof is more general then needed for the iterative
procedure for 1t employs a general lossless code at no extra
increase in difficulty.

Theorem 1 Let S denole an entropy H(S)} DSES whose
oulpul is encoded by a binary lpssless cede C) with average
codeword length L. Lel us parse a concalenation of code-
words of C1 1n blocks of r digils forming a source S| wilh
27 symbols. We encode 51 with a lossless code Cs, elc.,
and proceed as described above. The entropy rate Hp(5)
of the coded sequence al step k is grealer lhan or equal
to the entropy rale Hy_1(S} of the coded sequence af slep
k=1, k=23,....

Proof: Let Hi(S) denote the entropy rate of the bina-
ry sequence generated by a concatenation of codewords of
Cy, k=1,2,... (starting with C; driven by S). 1t is well
known that H{(S) = A(S)/L: and that H(S1) = rH((S).
It follows that

Hy(8) = H{S1)/ Lz = rH1(S)/La = H\(5),

where the inequality follows from the observation that
Ls < ris an upperbound for the average codeword length
of a binary lossless code for a source with 27 symbols. Pre-
ceeding with the iterations we obtain at the k'™ step that
He(S) > He1(S), £ =2,3,.... As we proceed with the
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iterations a step will be reached where the lossless code
specified for the source with r symbols will have all code-
words with the same length. The resulting binary coded
sequence is no longer ergodic and whenever this situation
happens we may consider repeating that step however pars-
ing with a block size of at least r + 1 symbols and proeceed
from then on in the same manner or simply to stop. S-
ince the property of increasing entropy of coded sequences
is valid for source extensions of any order, it follows that
the entropy rate H;(S) of the k** coded sequence tends in
the limit to 1 as the number k of iterations grows. 0

We notice that whenever this equal codeword length phe-
nomena happens in the iterative procedure the entropy of
the coded output sequence is usually quite close to 1.
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